Search results for "site-directed mutagenesis"

showing 10 items of 27 documents

Structural and Functional Analysis of the Antiparallel Strands in the Lumenal Loop of the Major Light-harvesting Chlorophyll a/b Complex of Photosyst…

2007

The light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCIIb) fulfills multiple functions, such as light harvesting and energy dissipation under different illuminations. The crystal structure of LHCIIb at the near atomic resolution reveals an antiparallel strands structure in the lumenal loop between the transmembrane helices B/C. To study the structural and functional significances of this structure, three amino acids (Val-119, His-120, and Ser-123) in this region have been exchanged to Phe, Leu, and Gly, respectively, and the influence of the mutagenesis on the structure and function of LHCIIb has been investigated. The results are as follows. 1) Circular dichroism spect…

ChlorophyllModels MolecularCircular dichroismPhotosystem IIRecombinant Fusion ProteinsLight-Harvesting Protein ComplexesAntiparallel (biochemistry)BiochemistryFluorescencechemistry.chemical_compoundNeoxanthinSite-directed mutagenesisMolecular BiologyPlant ProteinsPhotobleachingChemistryChlorophyll ACircular DichroismPeasPhotosystem II Protein ComplexCell BiologyFluorescenceTransmembrane domainB vitaminsCrystallographyMutationMutagenesis Site-DirectedProtein BindingJournal of Biological Chemistry
researchProduct

Evaluation of an amino acid residue critical for the specificity and activity of human Gb3/CD77 synthase

2016

Human Gb3/CD77 synthase (α1,4-galactosyltransferase) is the only known glycosyltransferase that changes acceptor specificity because of a point mutation. The enzyme, encoded by A4GALT locus, is responsible for biosynthesis of Gal(α1–4)Gal moiety in Gb3 (CD77, Pk antigen) and P1 glycosphingolipids. We showed before that a single nucleotide substitution c.631C > G in the open reading frame of A4GALT, resulting in replacement of glutamine with glutamic acid at position 211 (substitution p. Q211E), broadens the enzyme acceptor specificity, so it can not only attach galactose to another galactose but also to N-acetylgalactosamine. The latter reaction leads to synthesis of NOR antigens, which are…

0301 basic medicineAcetylgalactosamineMutation MissenseBiochemistryGlycosphingolipidsSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundGb3/CD77 synthaseBiosynthesisCell Line TumorGlycosyltransferaseAspartic acidHumansAsparagineSite-directed mutagenesisMolecular BiologySite-directed mutagenesisbiologyAntigens NuclearGlutamic acidCell BiologyGalactosyltransferasesMolecular biologyEnzyme assayGlutamineP1PK blood group system030104 developmental biologyAmino Acid SubstitutionBiochemistrychemistryGlycopshingolipidsbiology.proteinNOR polyagglutinationOriginal ArticleGlycoconjugate Journal
researchProduct

Production of biologically active light chain of tetanus toxin inEscherichia coli

1993

AbstractThe activity of the light (L) chain of tetanus toxin, and of mutants constructed by site-directed mutagenesis, was studied by expression and purification of the proteins from E. coli. Wild-type recombinant L chain (pTet87) was active in the inhibition of exocytosis from cultured bovine adrenal chromaffin cells, although at a level 5–15% of that of L chain purified from tetanus toxin. L chain mutants which terminated at Leu-438 (pTet89), or which contained a Cys-to-Ser mutation at residue 439 (pTet88) were equally as active as the full-length recombinant protein. The reduced activity of pTet87 L chain correlated with C-terminal proteolysis of the protein upon purification. A tryptic …

Recombinant proteinMacromolecular SubstancesProteolysisMolecular Sequence DataRestriction MappingDNA RecombinantBiophysicsBiologymedicine.disease_causeImmunoglobulin light chainBiochemistryExocytosislaw.inventionNorepinephrineTetanus ToxinStructural BiologylawEscherichia coliGeneticsmedicineAnimalsAmino Acid SequenceCloning MolecularSite-directed mutagenesisMolecular BiologyEscherichia coliCells Culturedchemistry.chemical_classificationBase Sequencemedicine.diagnostic_testToxinBiological activityCell BiologyMolecular biologyRecombinant ProteinsE. coli Chromaffin cellAmino acidKineticsOligodeoxyribonucleotideschemistryBiochemistryAdrenal MedullaMutagenesis Site-DirectedRecombinant DNACalciumCattleElectrophoresis Polyacrylamide GelSite directed mutagenesisFEBS Letters
researchProduct

Precise mapping of the Goodpasture epitope(s) using phage display, site-directed mutagenesis, and surface plasmon resonance.

2013

Goodpasture disease is an autoimmune disorder mediated by circulating autoantibodies against the noncollagenous-1 (NC1) domain of the alpha 3 chain of type IV collagen (alpha 3(IV)NC1). The structure of Goodpasture epitope(s) has been previously mapped into two main binding regions (E-A and E-B) of the alpha 3(IV)NC1 domain using a residue mutation approach on the highly related alpha 1(IV)NC1 domain. Here we combined phage display and surface plasmon resonance technology to more precisely localize the pathogenic binding sites. Peptides mimicking the Goodpasture epitope(s) were used to identify residues involved in autoantibody binding and found involvement of eight residues previously unre…

Collagen Type IVMalePhage displayautoantibodiesMutantMutagenesis (molecular biology technique)Enzyme-Linked Immunosorbent Assaycollagen type IVAutoantigensEpitopeType IV collagenHumansBinding siteSite-directed mutagenesisAutoantibodiesepitopeChemistryAutoantibodyGoodpasture diseaseMiddle AgedSurface Plasmon ResonanceMolecular biologyNephrologyMutagenesis Site-DirectedBinding Sites Antibodyphage displayCell Surface Display Techniquessurface plasmon resonanceEpitope MappingKidney international
researchProduct

Homemade Site Directed Mutagenesis of Whole Plasmids

2009

Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensi…

GeneticsGeneral Immunology and MicrobiologyGeneral Chemical EngineeringGeneral NeuroscienceMutagenesis (molecular biology technique)Biologymedicine.disease_causeGeneral Biochemistry Genetics and Molecular BiologyPfu polymeraseTransformation (genetics)PlasmidMutation (genetic algorithm)Escherichia coliMutagenesis Site-DirectedmedicineTransformation BacterialTarget geneBasic ProtocolsSite-directed mutagenesisEscherichia coliPlasmidsJournal of Visualized Experiments
researchProduct

New insights into the pharmacology of the short-chain free fatty acid receptors 2 and 3

2011

Metabolic diseases, such as diabetes, dyslipidemia or obesity, are more and more weighing on public health expenses in developed countries. Despite active research, these widespread diseases remain difficult to handle. Promising new therapeutic strategies against metabolic diseases include the development of drugs targeting the free fatty acid receptors, as key players in metabolism homeostasis. In this context, the current PhD thesis focuses on the study of two G protein-coupled receptors, namely the short-chain free fatty acid receptors 2 (FFA2) and 3 (FFA3). First, we investigated the expression of the two receptors of interest in a variety of cell types. Then, in order to study the phar…

[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesFree fatty acid receptorsModèle structuralDiabèteShort-chain free fatty acidsPharmacologieRécepteurs couplés aux protéines GG protein coupled receptors[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyObesityObésitéStructural model[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesPharmacology[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesSite-directed mutagenesis[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyDiabetesMetabolic diseasesRécepteurs aux acides grasMutagénèse à site dirigéMaladies métaboliquesDyslipidemiaAcides gras à chaîne courte[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyDyslipidémie
researchProduct

2016

Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppre…

0301 basic medicineTRNA modificationbiologyProtein familySaccharomyces cerevisiaeCell Biologybiology.organism_classificationBiochemistry Genetics and Molecular Biology (miscellaneous)MicrobiologyApplied Microbiology and Biotechnology03 medical and health sciences030104 developmental biologyUbiquitinBiochemistryVirologyTransfer RNAGeneticsbiology.proteinParasitologySite-directed mutagenesisPeroxiredoxinMolecular BiologyProtein urmylationMicrobial Cell
researchProduct

Probing suggested catalytic domains of glycosyltransferases by site-directed mutagenesis.

2003

The plant enzyme arbutin synthase isolated from cell suspension cultures of Rauvolfia serpentina and heterologously expressed in Escherichia coli is a member of the NRD1beta family of glycosyltransferases. This enzyme was used to prove, by site-directed mutagenesis, suggested catalytic domains and reaction mechanisms proposed for enzyme-catalyzed glycosylation. Replacement of amino acids far from the NRD domain do not significantly affect arbutin synthase activity. Exchange of amino acids at the NRD site leads to a decrease of enzymatic activity, e.g. substitution of Glu368 by Asp. Glu368, which is a conserved amino acid in glycosyltransferases located at position 2 and is important for enz…

GlycosylationStereochemistryMolecular Sequence DataBiologyBiochemistryPolymerase Chain ReactionGene Expression Regulation EnzymologicRauwolfiaSubstrate Specificitychemistry.chemical_compoundCatalytic DomainGlycosyltransferaseEscherichia coliAmino Acid SequenceSite-directed mutagenesisConserved SequenceDNA Primerschemistry.chemical_classificationBinding SitesATP synthaseSequence Homology Amino AcidMutagenesisArbutinGlycosyltransferasesEnzyme assayRecombinant ProteinsAmino acidEnzymechemistryBiochemistryAmino Acid Substitutionbiology.proteinMutagenesis Site-DirectedEuropean journal of biochemistry
researchProduct

Extracellular loop 2 of G protein-coupled olfactory receptors is critical for odorant recognition

2021

International audience; G protein-coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed in non-olfactory tissues and emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of a larger mechanism for odor discrimination. Here, we demonstrate that the OR extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid over the orthosteric pocket. We demonstrate using molecular dynamics simulations that ECL2 controls the shape and the volume of the odorant-binding pocket, m…

Protein Conformation alpha-HelicalOdorant bindingG protein[SDV]Life Sciences [q-bio]Mutagenesis (molecular biology technique)Molecular Dynamics SimulationLigandsReceptors OdorantBiochemistryMice[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyExtracellularOlfactory receptorAnimalsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyReceptorMolecular BiologyG protein-coupled receptorVirtual screeningmolecular modelingChemistryCell Biologyvirtual screeningLigand (biochemistry)Cell biology[SDV] Life Sciences [q-bio]Smell[SDV.AEN] Life Sciences [q-bio]/Food and NutritionOdorantsMutagenesis Site-Directedsite-directed mutagenesis[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Glutamate 270 plays an essential role in K+-activation and domain closure ofThermus thermophilusisopropylmalate dehydrogenase

2014

The mutant E270A of Thermus thermophilus 3-isopropylmalate dehydrogenase exhibits largely reduced (∼1%) catalytic activity and negligible activation by K(+) compared to the wild-type enzyme. A 3-4 kcal/mol increase in the activation energy of the catalysed reaction upon this mutation could also be predicted by QM/MM calculations. In the X-ray structure of the E270A mutant a water molecule was observed to take the place of K(+). SAXS and FRET experiments revealed the essential role of E270 in stabilisation of the active domain-closed conformation of the enzyme. In addition, E270 seems to position K(+) into close proximity of the nicotinamide ring of NAD(+) and the electron-withdrawing effect…

Models MolecularStereochemistry030303 biophysicsMutantBiophysicsGlutamic AcidLarge scale facilities for research with photons neutrons and ionsSmall angle X-ray scatteringDehydrogenaseBiochemistry3-Isopropylmalate Dehydrogenase03 medical and health scienceschemistry.chemical_compoundIsopropylmalate dehydrogenaseFluorescence resonance energy transferStructural BiologyOxidoreductaseGeneticsMolecular BiologyX-ray crystallography030304 developmental biologychemistry.chemical_classificationSite-directed mutagenesis0303 health sciencesNicotinamidebiologyThermus thermophilusActivation by K+Cell BiologyThermus thermophilusbiology.organism_classificationProtein Structure TertiaryMOPSEnzyme ActivationKineticsCrystallographyEnzymechemistryMutationNAD+ kinaseFEBS Letters
researchProduct